

Per- & Polyfluoroalkyl Substances (Day 2)

EMEP CEC Workshop 8th – 10th Nov 2023

The climate and environmental research institute NILU A part of the research alliance NORIN

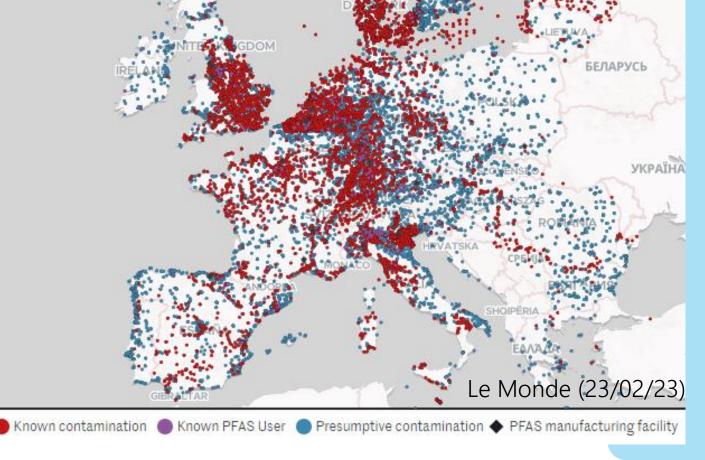
Flyplassen skjuler en miljøbombe - må rydde opp for over hundre millioner

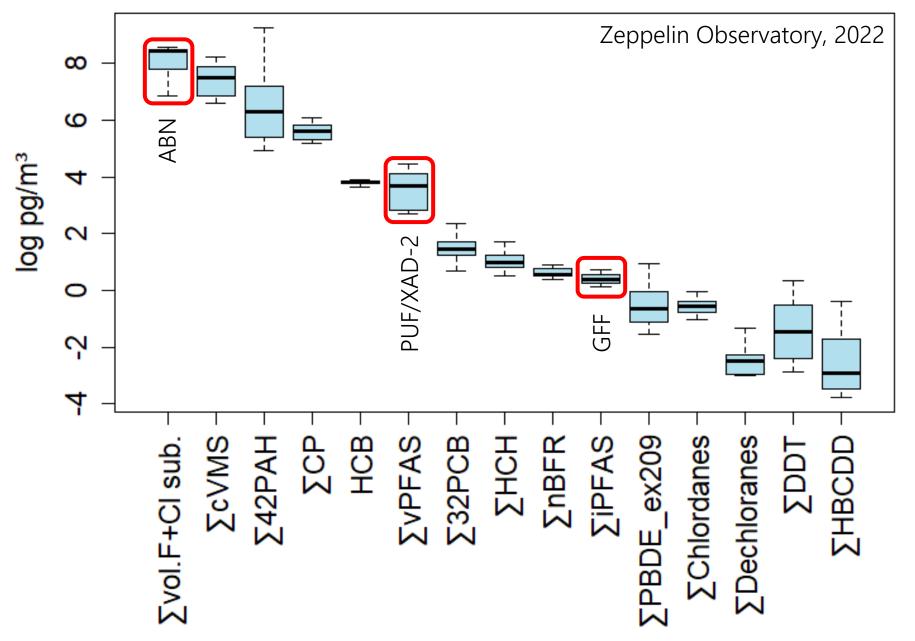
Svalbard lufthavn er kraftig forurenset av miljøgiften PFAS. Nå får Avinor pålegg om å fjerne de forurensede massene.

• 20 PFAS producers

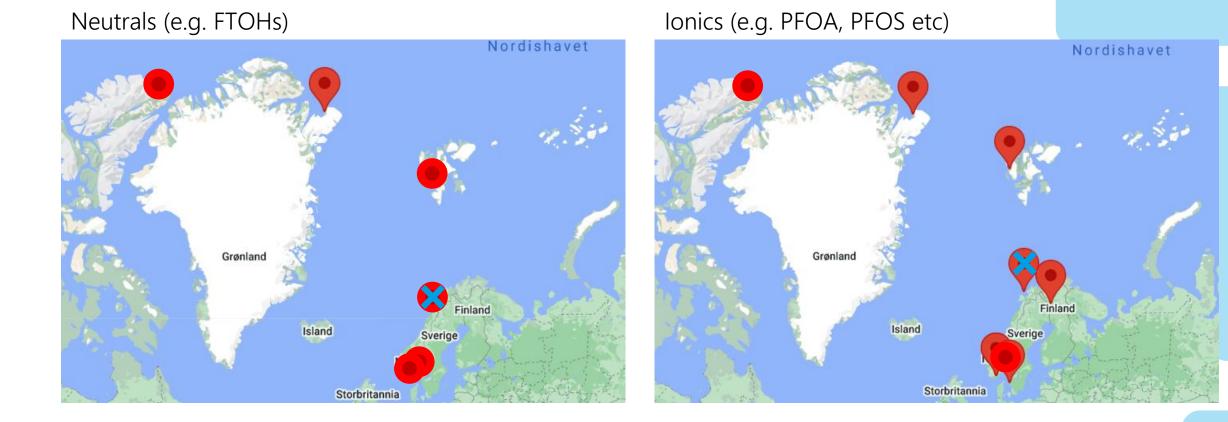
- 232 industrial users
- >17,000 contaminated sites
- Further >21,000 suspected sites

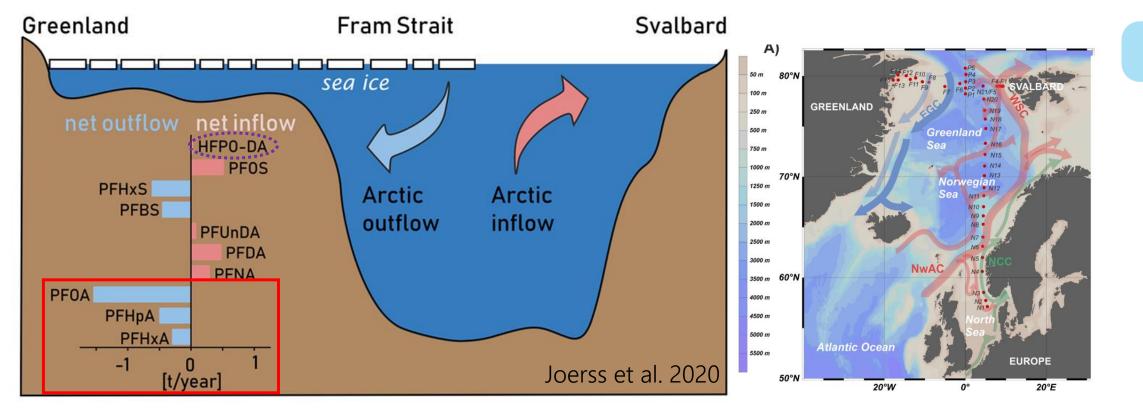
(Red reports detection of PFAS in soil/water)


Avinor må nå fjerne miljøgiften PFAS ved flyplassen i Longyearbyen på Svalbard. FOTO: RUNE NORDGÅRD ANDREASSEN / NRK Cost: 114 million NOK


EU considers ban on 'forever chemicals', urges search for alternatives

By Ludwig Burger

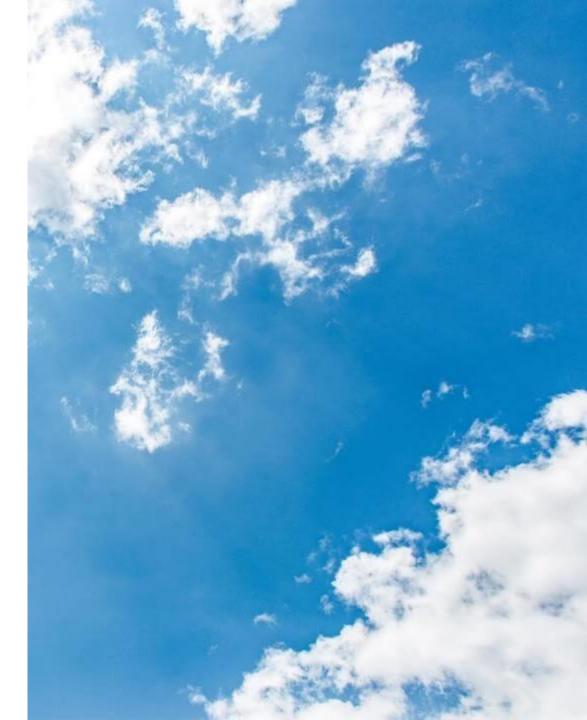

European Union flags flutter outside the EU Commission headquarters, in Brussels, Belgium, February 1, 2023 REUTERS/Yves Herman/File Photo


The concentrations of all compound groups measured at the Zeppelin observatory in 2022.

Where are we measuring right now (northern Europe)?

What do we know so far (in the Arctic)?

- Atmospheric deposition enables:
 - Ubiquitous detection of PFAS in Arctic ocean surface water, including emerging PFAS like GenX (HFPO-DA)
 - Export of some PFAS <u>from</u> the Arctic (!?)



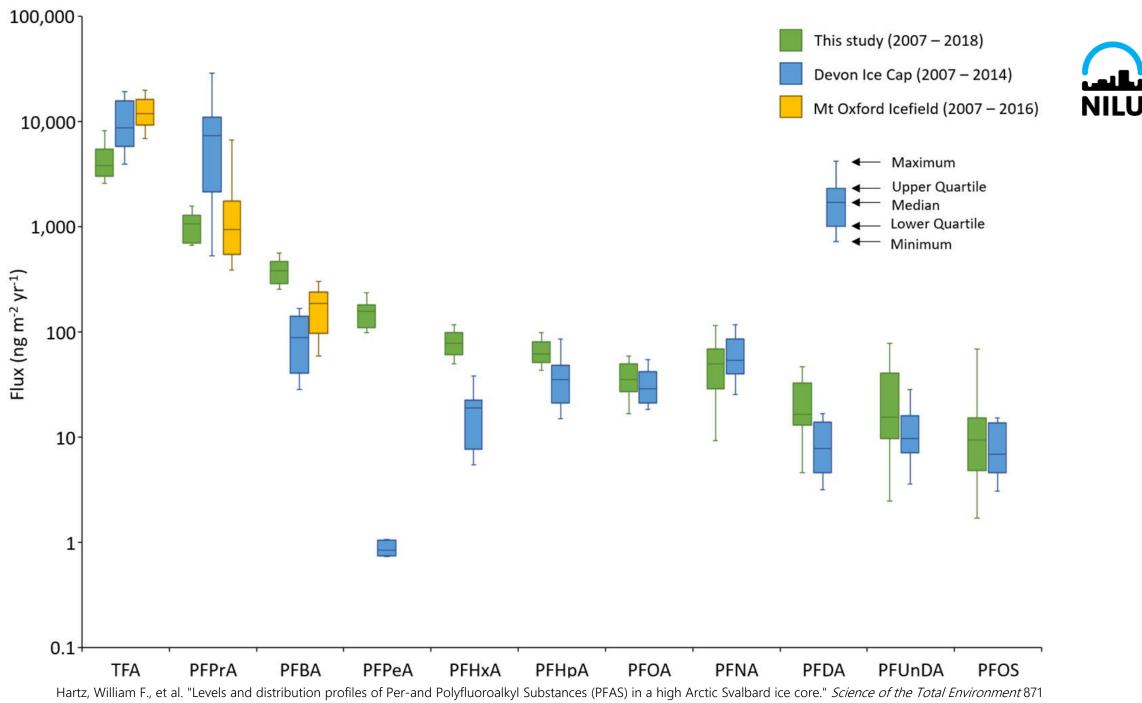
What should we measure?

Current active air sampling measures: Ionic PFAS: i.e. C4 – C11 PFCAs Neutral PFAS: i.e. FTOHs, FASAs, FASEs

PFAS are <u>persistent</u>, some also <u>bioaccumulative</u> and <u>toxic</u>

Some PFAS also relevant to <u>climate forcing</u> (high GWP) (<u>Ozone depleting?</u>)

What do we know so far (in the Arctic)?


	Neutral PFAS (e.g. FTOHs)	lonic PFAS (e.g. PFOA)	
Alert	2006 – ongoing	2006 – ongoing	
(Canada - ECCC)	(GFF + PUF/XAD-2)	(GFF + PUF/XAD-2)	
Villum	2014 – ongoing	2021 – ongoing	
(Greenland - Aarhus)	(GFF + PUF/XAD-2)	(GFF only)	
Zeppelin (Svalbard - NILU)	2017 – ongoing (PUF/XAD-2)	2006 – ongoing (GFF only)	Grønland Finland Island Sverige
Andøya	2017 – 2021	2010 – 2021	Storbritannia
(dicscon NILU)	(PUF/XAD-2)	(GFF only)	

	NT.	<u>a</u> , ,		N.	
Abbreviation	Name	Structure	Abbreviation	Name Perfluoroalkyl carboxylic a GFF	Structure
-	Perfluorosulfo XAD-2/PLIE Sandwich		PFCAs TFA	Perfluoroalkyl carboxylic a GFF	CF ₃ CO ₂ H
FBSA	Perfluorosulfo Perfluorobutan XAD-2/PUF Sandwich	CF ₃ (CF ₂) ₃ SO ₂ NH ₂	DED: A	Derfuerenzeneneie Aeid	CF CF CO U
FHXSA	Perfluorobevane Sulfonamide	$CF_3(CF_2)_3SO_2NH_2$	PFBA	Perfluorobutanoic Acid	CF ₃ (CF ₂) ₂ CO ₂ H
			PFPeA	Perfluoropentanoic Acid	CF ₃ (CF ₂) ₃ CO ₂ H
FOSA	Perfluorooctane Sulfonamide	$CF_3(CF_2)_7SO_2NH_2$	PFHxA	Perfluorohexanoic Acid	CF ₃ (CF ₂) ₄ CO ₂ H
FASAs	N-alkyl perfluoroalkane sulfonamide		PFHpA	Perfluoroheptanoic Acid	CF ₃ (CF ₂) ₅ CO ₂ H
		OF (OF) SO NU	PFOA	Perfluorooctanoic Acid	CF ₃ (CF ₂) ₆ CO ₂ H
MeFBSA	N-Methyl Perfluorobutane Sulfonamide	$CF_3(CF_2)_3SO_2NH_2$	PFNA	Perfluorononanoic Acid	CF ₃ (CF ₂) ₇ CO ₂ H
MaELLINGA	NI Methyl Derfluercherene Sulferenide	$CE_{(CE_{2})}SO_{2}NU_{2}$	PFDA	Perfluorodecanoic Acid	$CF_3(CF_2)_8CO_2H$
MeFOSA	N-Methyl Perfluorooctane Sulfonamide	CF ₃ (CF ₂) ₇ SO ₂ NH ₂	PFUnDA	Perfluoroundecanoic Acid	$CF_3(CF_2)_9CO_2H$
			PFDoDA PFTrDA	Perfluorododecanoic Acid Perfluorotridecanoic Acid	CF ₃ (CF ₂) ₁₀ CO ₂ H CF ₃ (CF ₂) ₁₁ CO ₂ H
EtFOSA	N-Ethyl Perfluorooctane Sulfonamide	$CF_3(CF_2)_7SO_2NH_2$	PFTeDA	Perfluorotetradecanoic Acid	$CF_3(CF_2)_{11}CO_2H$ $CF_3(CF_2)_{12}CO_2H$
FUSES	IN-aikyi periluoroaikane sullonamido ethanois				CF3(CF2)]2CO2II
MEDOD	NI Mederal Derflorensburtens Culferrenside ethere al	CE (CE) SO N(CH)(CH CH OH)	PFOcDA	Perfluorooctadecanoic Acid	CF ₃ (CF ₂) ₁₄ CO ₂ H CF ₃ (CF ₂) ₁₈ CO ₂ H
MEROSE	N Mathed D. Comparison Culture identification of	CE (CE) SO N(CH)(CH CH OH)	PFSAs	Perfluoroalkyl sulfonic acids	
MeFOSE	N-Methyl Perfluorooctane Sulfonamidoethanol	$CF_3(CF_2)_7SO_2N(CH_3)(CH_2CH_2OH)$	TFMS	Trifluoromethane Sulfonic Acid	CF ₃ SO ₃ H
EtFOSE	N-Ethyl Perfluorooctane Sulfonamidoethanol	$CF_3(CF_2)_7SO_2N(CH_3)(CH_2CH_2OH)$	PFEtS	Perfluoroethane Sulfonic Acid	CF ₃ CF ₂ SO ₃ H
	Ellipeotolomor algonolis				
			PFBS	Perfluorobutane Sulfonic Acid	CF ₃ (CF ₂) ₃ SO ₃ H
4:2 FTOH	4:2 Fluorotelomer Alcohol	$CF_3(CF_2)_3(CH_2)_2OH$	PFPeS	Perfluoropentane Sulfonic Acid	CF ₃ (CF ₂) ₄ SO ₃ H
6:2 FTOH	6:2 Fluorotelomer Alcohol	CF ₃ (CF ₂) ₅ (CH ₂) ₂ OH	PFHxS	Perfluorohexane Sulfonic Acid	CF ₃ (CF ₂) ₅ SO ₃ H
			PFHpS	Perfluoroheptane Sulfonic Acid	CF ₃ (CF ₂) ₆ SO ₃ H
8:2 FTOH	8:2 Fluorotelomer Alcohol	$CF_3(CF_2)_7(CH_2)_2OH$	PFOS	Perfluorooctane Sulfonic Acid	CF ₃ (CF ₂) ₇ SO ₃ H
10:2 FTOH	10:2 Fluorotelomer Alcohol	$CF_3(CF_2)_9(CH_2)_2OH$	PFNS	Perfluorononane Sulfonic Acid	CF ₃ (CF ₂) ₈ SO ₃ H
12:2 FTOH	12:2 Fluorotelomer Alcohol	$CF_3(CF_2)_{11}(CH_2)_2OH$	PFDS	Perfluorodecane Sulfonic Acid	CF ₃ (CF ₂) ₉ SO ₃ H
		$CF_3(CF_2)_{11}(CH_2)_{2}OH$	PFDoDS	Perfluorododecane Sulfonic Acid	CF ₃ (CF ₂) ₁₂ SO ₃ H
гтаз	riuoroteionier acrytate		DEECAs	Perfuoroelly/cyclonexane Surfome Actu	(01 301 2)061 1050311
6:2 FTA	6:2 Fluorotelomer Acrylate	CF ₃ (CF ₂) ₅ (CH ₂) ₂ OC(O)CHCH ₂	PFECAs HFPO-DA (GenX)	Perfluoroalkyl ether carboxylic acids	CE (CE) OCH(CE)CO H
8:2 FTA	8:2 Fluorotelomer Acrylate	CF ₃ (CF ₂) ₇ (CH ₂) ₂ OC(O)CHCH ₂	HFPO-DA (GenX) ADONA	Hexafluoropropylene Oxide Dimer Acid	CF ₃ (CF ₂) ₂ OCH(CF ₃)CO ₂ H CF ₃ O(CF ₂) ₃ OCHFCF ₂ CO ₂ H
	8:2 Fluorotetomer Actytate	$CF_3(CF_2)_7(CH_2)_2OC(0)CHCH_2$	ADONA PFESAs	3H-Perfluoro-3-[(3-Methoxy-Propoxy)Propanoic Acid] Perfluoroalkyl ether sulfonic acids	CF ₃ O(CF ₂) ₃ OCHFCF ₂ CO ₂ 11
Other			6:2 Cl-PFESA	6:2 Chlorinated Polyfluorinated Ether Sulfonic Acid	ClCF ₂ (CF ₂) ₅ O(CF ₂) ₂ SO ₃ H
POSF	Perfluorooct Online GC-MS (Medusa	$F_3(CF_2)_7SO_2F$	8:2 CI-PFESA	8:2 Chlorinated Polyfluorinated Ether Sulfonic Acid	$ClCF_2(CF_2)_{5}O(CF_2)_{2}SO_{3}H$ $ClCF_2(CF_2)_{7}O(CF_2)_{2}SO_{3}H$
	Perfluorooct Online GC-MS (Medusa		DTD AT T DOLL		0101 2(01 2)10(01 2)20 - 3
	News Consta Formula Francis	F	4:2 FTSA	4:2 Fluorotelomer Sulfonic Acid	CF ₃ (CF ₂) ₃ (CH ₂) ₂ SO ₃ H
	C _n F _{2n+1} (CHF) _x CH _y F _z		6:2 FTSA	6:2 Fluorotelomer Sulfonic Acid	CF ₃ (CF ₂) ₅ (CH ₂) ₂ SO ₃ H
			8:2 FTSA	8:2 Fluorotelomer Sulfonic Acid	CF ₃ (CF ₂) ₇ (CH ₂) ₂ SO ₃ H
HFCs	Hydrofluorocarbons $C_nF_{2n+1}(CHF)_x(CF_2)_yF$	HFC-134a (CF ₃ CH ₂ F)	TIUCAS	Finorotetomer onsaturaten Carboxyne Aciu	
	(x = 0 - 2, y = 0 - 3, z = 0 - 3)	3)	6:2 FTUCA	6:2 Fluorotelomer Unsaturated Carboxylic Acid	CF ₃ (CF ₂) ₄ CFCHCO ₂ H
	$C_{n}F_{2n+1}CHFC1$		8:2 FTUCA	8:2 Fluorotelomer Unsaturated Carboxylic Acid	CF ₃ (CF ₂) ₆ CFCHCO ₂ H
			FTCAs	Fluorotelomer Carboxylic Acid	
HCFCs	Hydrochlorofluorocarbons C _n F _{2n+1} CH _x Cl _y	HCFC-123 (CF ₃ CCl ₂ H)	6:2 FTCA	6:2 Fluorotelomer Carboxylic Acid	CF ₃ (CF ₂) ₅ CH ₂ CO ₂ H
	(x = 1 - 2, y = 1 - 2)		8:2 FTCA	8:2 Fluorotelomer Carboxylic Acid	CF ₃ (CF ₂) ₇ CH ₂ CO ₂ H
HFEs	Hydrotluoroethers	HFE-236ea2 (CF ₃ CFHOCF ₂ H)			
	(x = 1 - 2)	· · · · · · · · · · · · · · · · · · ·		Massing of Zephelin	
	$C_nF_{2n+1}CF=CH_xF_y$			Measured at Zeppelir	
HFOs	Hydrofluoroolefins $C_n r_{2n+1} C r_{x} r_{y}$ (x = 0 - 2, y = 0 - 2)	HFO-1234yf (CF ₃ CF=CH ₂)			
	(x - 0 - 2, y - 0 - 2)				

ZEPPELIN – Air 2022									
Ionic and volatile PFAS (pg/m3) Class of uncertainty:2									
Compound	Matrix	No. of	MDL*	DF	Concentration	Annual	Annual		
Compound	Iviatrix	samples		(%)	range	mean	median		
FTS 4:2	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044		
FTS 6:2	Particle phase	12	0.940	8	<0.940-1.26	<0.940	<0.940		
FTS 8:2	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022		
PFBA	Particle phase	12	0.250	0	<0.250-<0.250	<0.250	<0.250		
PFPeA	Particle phase	12	0.044	50	<0.044-0.104	0.048	< 0.044		
PFHxA	Particle phase	12	0.088	42	< 0.088-0.204	<0.088	<0.088		
PFHpA	Particle phase	12	0.033	75	<0.033-0.298	0.116	0.099		
PFOA	Particle phase	12	0.022	58	<0.011-0.297	0.124	0.130		
PFNA	Particle phase	12	0.022	50	<0.022-0.165	0.0401	0.021		
PFDA	Particle phase	12	0.022	33	<0.022-0.119	0.031	<0.022		
PFUnA	Particle phase	12	0.033	0	<0.033-<0.033	< 0.033	< 0.033		
PFDoA	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044		
PFTrA	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	< 0.088		
PFTeA	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022		
PFBS	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022		
PFPS	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044		
PFHxS	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022		
PFHpS	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044		
PFOS	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044		
PFNS	Particle phase	12	0.066	0	<0.066-<0.066	< 0.066	< 0.066		
PFDS	Particle phase	12	0.066	0	<0.066-<0.066	< 0.066	< 0.066		
PFUnS	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	<0.088		
PFDoS	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	<0.088		
PFTrS	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	< 0.088		
PFTS	Particle phase	12	0.100	0	<0.100-<0.100	< 0.100	<0.100		
PFOSA	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044		
sum ionic PFAS		12			1.145-2.036	1.54	1.46		
4:2 FTOH	Gas phase	12	0.680	0	<0.68-<0.68	<0.68	<0.68		
6:2 FTOH	Gas phase	12	1.96	100	5.30-42.1	14.0	9.53		
8:2 FTOH	Gas phase	12	1.04	100	5.79-49.2	19.4	17.0		
10:2 FTOH	Gas phase	12	0.780	100	1.12-17.6	6.20	5.38		
12:2 FTOH	Gas phase	12	0.390	100	0.56-7.46	2.64	2.58		
N-Me-FOSA	Gas phase	12	0.780	20	<0.78-0.86	<0.78	<0.78		
N-Et-FOSA	Gas phase	12	0.440	30	<0.44-0.67	<0.44	<0.44		
N-Me-FOSE	Gas phase	12	0.280	30	<0.28-0.85	0.29	<0.28		
N-Et-FOSE	Gas phase	12	0.340	10	<0.34-0.52	< 0.34	<0.34		
Sum Vol PFAS		12			14.6-85.8	43.9	40.4		

(2023): 161830.

ZEPPELIN – Air					Ultrashort-	UNIS, Longyearbyen	Foxfonna	Reference sites	Svalbard Ice Core (Lomo)			
Ionic and volatile PFAS (pg/m3) Class of uncertainty:2								chain	100%	100%	100%	100%
		No. of	MDL*	DF	Concentration	Annual	Annual	PEPTA	100%	100%	100%	100%
Compound	Matrix	samples	NIDL	(%)	range	mean	median	PFBA PFPeA	100% Blue data <i>in review</i> .	90%	100%	100% 100%
FTS 4:2	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044	PFHxA				100%
FTS 6:2	Particle phase	12	0.940	8	<0.940-1.26	<0.940	< 0.940	PFHpA	Hartz, William F., Variations of Per- a			100%
FTS 8:2	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022	PFOA	(PFAS) in Surface Si			100%
PFBA	Particle phase	12	0.250	0	<0.250-<0.250	< 0.250	< 0.250	PFNA	Submitted 2023			100%
PFPeA	Particle phase	12	0.044	50	<0.044-0.104	0.048	< 0.044	PFDA PFUnDA				100% 100%
PFHxA	Particle phase	12	0.088	42	<0.088-0.204	< 0.088	<0.088	PFDoDA				82%
PFHpA	Particle phase	12	0.033	75	<0.033-0.298	0.116	0.099	PFTrDA				88%
PFOA	Particle phase	12	0.022	58	<0.011-0.297	0.124	0.130	PFTDA				18%
PFNA	Particle phase	12	0.022	50	<0.022-0.165	0.0401	0.021	PFHxDA				12%
PFDA	Particle phase	12	0.022	33	<0.022-0.119	0.031	<0.022	PFOcDA				0%
PFUnA	Particle phase	12	0.033	0	<0.033-<0.033	< 0.033	< 0.033	TFMS	100%	100%	100%	n/a
PFDoA	Particle phase	12	0.044	0	<0.044-<0.044	<0.044	<0.044	PFEtS	100%	0%	0%	0%
PFTrA	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	<0.088	PFPrS PFBS	0% 63%	0% 10%	0% 0%	0% 24%
PFTeA	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022	PFPeS	0370	1070	070	6%
PFBS	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022	PFHxS	Other data reference	es:		65%
PFPS	Particle phase	12	0.044	0	<0.044-<0.044	<0.044	<0.044	PFHpS	Björnsdotter, Maria	K., et al. "Levels a	and seasonal	0%
PFHxS	Particle phase	12	0.022	0	<0.022-<0.022	<0.022	<0.022	PFOS	trends of C1–C4 p discovery of trifluo			82%
PFHpS	Particle phase	12	0.044	0	<0.044-<0.044	< 0.044	< 0.044	PFNS	surface snow in the			0%
PFOS	Particle phase	12	0.044	0	<0.044-<0.044	<0.044	<0.044	PFDS	& Technology 55.23	(2021): 15853-1586	51.	0%
PFNS	Particle phase	12	0.066	0	<0.066-<0.066	<0.066	<0.066	PFDoDS	Hartz, William F., et	et al. "Levels and	distribution —	0%
PFDS	Particle phase	12	0.066	0	<0.066-<0.066	< 0.066	<0.066	FTUCAS	profiles of Per-and			0%
PFUnS	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	<0.088	FTUCAS 6:2 FTSA 8:2 FTSA	(PFAS) in a high Arc of the Total Environm			41% 0%
PFDoS	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	<0.088	6:2 FTUCA				35%
PFTrS	Particle phase	12	0.088	0	<0.088-<0.088	<0.088	<0.088	8:2 FTUCA				6%
PFTS	Particle phase	12	0.100	0	<0.100-<0.100	< 0.100	<0.100	PEECHS				0%
PFOSA	Particle phase	12	0.044	0	<0.044-<0.044	<0.044	<0.044	PFECHS, GenX, ADONA + HFPO-DA (Gen)				0%
sum ionic PFAS		12			1.145-2.036	1.54	1.46	8:2 CI-PFESA				0%
4:2 FTOH	Gas phase	12	0.680	0	<0.68-<0.68	<0.68	<0.68		<) ()			0%
6:2 FTOH	Gas phase	12	1.96	100	5.30-42.1	14.0	9.53	ADONA				0%
8:2 FTOH	Gas phase	12	1.04	100	5.79-49.2	19.4	17.0	FBSA				82%
10:2 FTOH	Gas phase	12	0.780	100	1.12-17.6	6.20	5.38	MeFBSA FHxSA				29% 6%
12:2 FTOH	Gas phase	12	0.390	100	0.56-7.46	2.64	2.58	C4 PFAS MeFHxSA				0%
N-Me-FOSA	Gas phase	12	0.780	20	<0.78-0.86	<0.78	<0.78	FOSA	Zeppelin data from 2	2022:		59%
N-Et-FOSA	Gas phase	12	0.440	30	<0.44-0.67	<0.44	<0.44	MeFOSA	Halvorsen, Helene I	Lunder, et al. "M	onitoring of	0%
N-Me-FOSE	Gas phase	12	0.280	30	<0.28-0.85	0.29	<0.28	EtFOSA	environmental co	ontaminants in	air and	6%
N-Et-FOSE	Gas phase	12	0.340	10	<0.34-0.52	< 0.34	<0.34	MeFOSE	precipitation. Annua (2023).	al report 2022." /	VILU rapport	24%
Sum Vol PFAS		12			14.6-85.8	43.9	40.4	EtFOSE	()			35%


What should we measure?

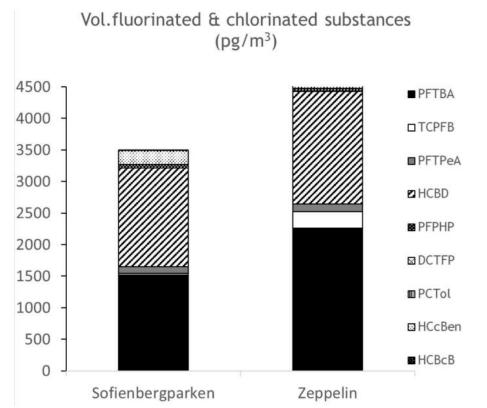
Current active air sampling measures:

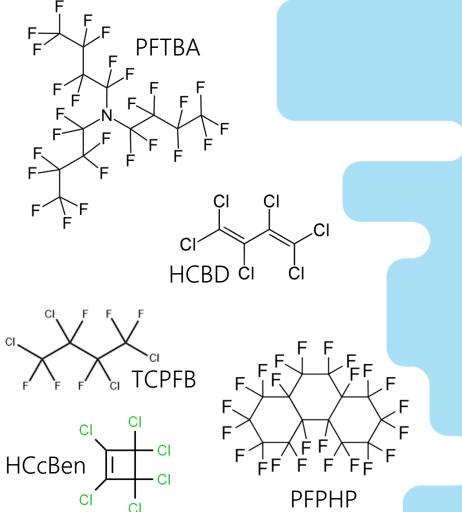
- Ionic PFAS: i.e. C4 C11 PFCAs
- Neutral PFAS: FTOHs, FASAs, FASEs

Future?

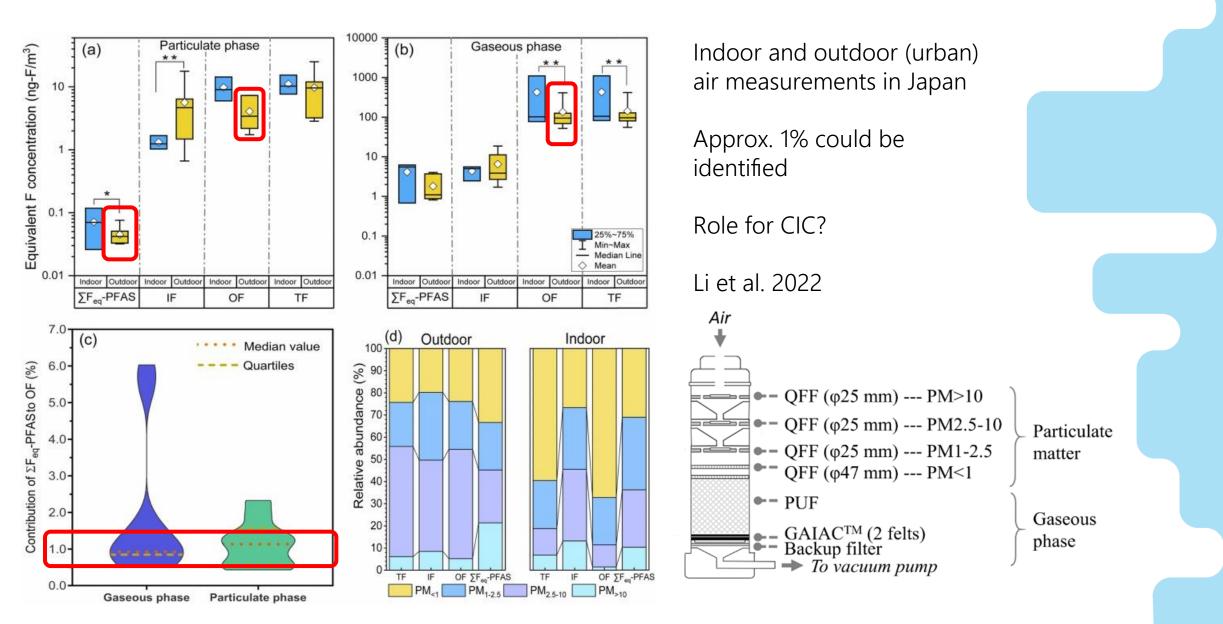
- Ultrashort chain PFAAs (e.g. TFA, TFMS)
- Emerging PFAS (e.g. GenX, PFECHS)
- FTUCAs (FTOH degradation product)
- C4 replacement compounds (e.g. FBSA, MeFBSA, MeFBSE, MeFBSAA)
- Other compounds?

Volatile Fluorinated & Chlorinated Substances



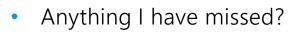

Figure 4: Annual median concentrations of the detected volatile fluorinated and chlorinated substances in air (pg/m³) at Sofienbergparken and Zeppelin in 2022. The annual median concentration at Zeppelin is based on weekly samples, while Sofienbergparken is based on monthly samples.

Volatile Fluorinated & Chlorinated Substances


Volatile fluorinated and chlorinated substances (pg/m3)									
Class of uncertainty:2									
PFTBA	Gas phase	24	50	77	59-2529	2085	2264		
TCPFB	Gas phase	24	1	100	36-299	221	260.5		
PFTPeA	Gas phase	24	10	70	44-183	118	116		
HCBD	Gas phase	24	5	100	851-2100	1745	1789		
PFPHP	Gas phase	24	5	70	13-53	39	40		
DCTFP	Gas phase	24	0.2	98	0.6-7.3	5.0	4.6		
PCTol	Gas phase	24	0.2	84	0.4-3.3	1.0	1.2		
DCPFcH	Gas phase	24	1	0	n.dn.d.	n.d.	n.d.		
PFBB	Gas phase	24	5	0	n.dn.d.	n.d.	n.d.		
bTFMBB	Gas phase	24	1	0	n.dn.d.	n.d.	n.d.		
DCBTC	Gas phase	24	0.5	0	n.dn.d.	n.d.	n.d.		
HCcBen	Gas phase	24	1	100	80-247	196	208		
НСВсВ	Gas phase	10	1	100	1.5-6.8	4.0	4.1		

Volatile Fluorinated & Chlorinated Substances

Volatile fluorinated and chlorinated substances					
Perfluorotributylamine	PFTBA	311-89-7			
Tetrachlorohexafluorobutane	TCPFB	375-45-1			
Perfluorotripentylamine	PFTPeA	338-84-1			
Hexachlorobutadiene	HCBD	87-68-3			
Perfluoroperhydrophenanthrene	PFPHP	306-91-2			
Dichlorotrifluoropyridene	DCTFP	1737-93-5			
Dichlorobenzotrichloride, 2,3	DCBTC	13014 24 9			
Dichlorobenzotrichloride, 3,4-		84613-97-8			
Dichloroperfluorocyclohexene	DCPFell	336-19-6			
Pentafluorobromobenzene	PFBB	341 01 7			
-3,5 bis (trifluoromethyl) bromobenzene	bisTEMBB	328 70 1			
Pentachlorotoluene	PCTol	877-11-2			
Hexachlorocyclobutene	HCcBen	6130-82-1			
HexaChlorobicyclobutane	HCBcB	-			



Other measurement approaches?

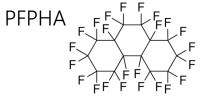
Points for discussion

- Different measurement strategies at different locations vs Harmonisation of measurements
- Current sampling often distinguishes particles vs gas phase
 - Is this important knowledge, or even accurate? Requirement for harmonisation across sites?
- What is relevant to measure? How important are PFAS that don't fulfil all PBT or long-range transport requirements (but are climate forcing / ozone depleting)?
- New role for ABN/online sampling for neutral/ionic PFAS?
- Deposition vs direct air measurement?
- Any QA/QC issues to discuss? Requirement for analytical/sampling method inter-institution comparison?
- For those not measuring PFAS currently should we expand geographical coverage e.g. with PAS?
- Role of PAS in a field dominated by active sampling Deploy XAD-2 PAS with EMEP/MONET? EMEP intensive measurement campaign?
- Role of archived filters/XAD-2 sandwich for retrospective investigations?
- Role for Fluorine Mass Balance approach (with CIC) or Total Oxidisable Precursor Assay (TOPA)?

PFAS – Outlook (Day 3)

EMEP CEC Workshop 8th – 10th Nov 2023

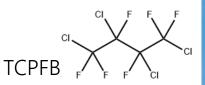
The climate and environmental research institute NILU A part of the research alliance NORIN

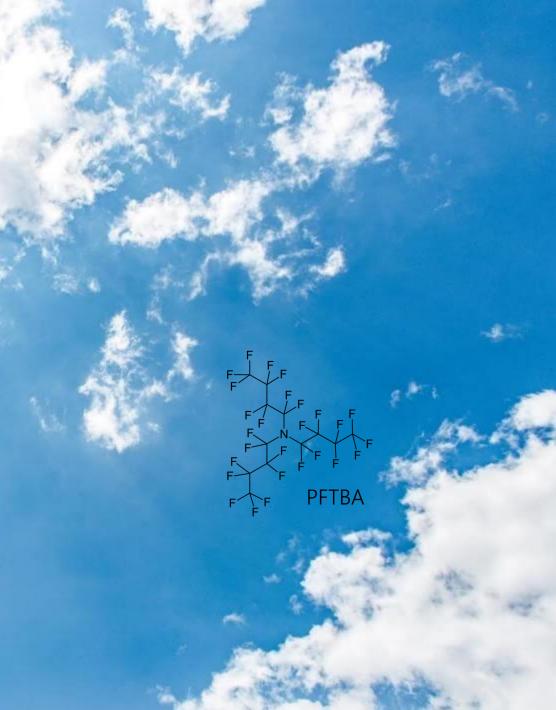

Summary of monitoring stations

		Neut	ral PFAS	Ioni	c PFAS	
Station	Latitude	Time period	Time period Sampling method		Sampling method	
Alert (Canada - ECCC)	82.5 °N	2006 – ongoing	GFF + PUF/XAD-2	2006 – ongoing	GFF + PUF/XAD-2	
Villum, Station Nord (Greenland - Aarhus)	81.6 °N	2014 – ongoing	GFF + PUF/XAD-2	2021 – ongoing	GFF	
Zeppelin (Svalbard - NILU)	78.9 °N	2017 – ongoing	PUF/XAD-2	2006 – ongoing	GFF	
Andøya (Norway - NILU)	69.3 °N	2017 – 2021	PUF/XAD-2	2010 – 2021	GFF	
Pallas (Finland - IVL)	68.0 °N	_	_	2017 - ongoing	GFF	
Sofienbergparken (Oslo - NILU)	59.9 °N	2022 – ongoing	PUF/XAD-2	2022 - ongoing	GFF	
Birkenes (Norway – NILU)	58.4 °N	2017 – ongoing	PUF/XAD-2	2006 – ongoing	GFF	
Råö (Sweden – IVL)	57.3 °N	_	_	2009 - ongoing	GFF	
Kosetice (Czechia – Masaryk)	49.6 °N	ongoing	QFF + PUF/XAD-2	ongoing	QFF + PUF/XAD-2	

Discussion for conclusions, recommendations and outlook - PFAS

- Different measurement strategies at different locations vs Harmonisation of measurements
 - Unable to use GFF and PUF/XAD-2 to distinguish particles-bound and gas phase neutral/ionic PFAS
 - Need for harmonisation, by measuring both GFF and XAD-2/PUF matrices for both individually for ionic and neutral PFAS
 - Also inconsistent sampling time periods, use of pooling, QFF vs GFF
 - High background from PUF for ionic PFAS with LC use of mesh instead to hold XAD-2
 - How do we achieve this together?
- What new PFAS should we measure (next slide)?
- New role for ABN/online sampling for neutral/ionic PFAS
 - First results coming soon
- Requirement for PAS to expand geographical coverage in Europe (+ N. America and Africa?)
 - Are PAS methods ready for this? EMEP intensive measurement campaign?
 - Deposition vs direct air measurement?
- Role for Fluorine Mass Balance approach (with CIC) or Total Oxidisable Precursor Assay (TOPA)?
 - Potentially has a future role
- Policy makers need to reduce and remove atmospheric emissions of FTOHs?


What should we measure?


Current active air sampling measures:

- Ionic PFAS: i.e. C4 C11 PFCAs
- Neutral PFAS: FTOHs, FASAs, FASEs

Future?

- Ultrashort chain PFAAs (e.g. TFA, TFMS)
- Emerging PFAS (e.g. GenX, PFECHS, F-53B, PFECAs)
- FTUCAs (FTOH degradation product)
- C4 replacement compounds (e.g. FBSA, MeFBSA, MeFBSE, MeFBSAA)
- PFTBA, PFPeTA, PFPHA, TCPFB, (HCBD)
- Other compounds?

Conclusion of Discission (written after the workshop)

- Arctic/established stations should aim to measure both neutral and ionic PFAS on filters and PUF/XAD-2 individually
 - Results should be summed and reported as a combined gas + particle phase concentration
- To increase special coverage, stations already measuring PAHs, can also measure PFAS just on a GFF filter
 - This is to get an indication of regional/local atmospheric levels, owing to lack of established method for passive air sampling for PFAS
- A Europe wide passive air sampling campaign to measure neutral PFAS (with XAD-2) is recommended (e.g. EMEP intensive measurement campaign and/or MONET network)
- All stations should continue to measure existing (neutral and/or ionic) analytes and try to measure as many additional analytes as possible
 - As a minimum, this should include GenX (HFPO-DA)

